Symbolic erformance & Learning in Continuous Environ ents

نویسنده

  • Seth
چکیده

We present an approach which enables an agent to learn to achieve goals in continuous environments using a symbolic architecture. Symbolic processing has an advantage over numerical regression techniques because it can interface more easily with other symbolic systems, such as systems for natural language and planning. Our approach is to endow an agent with qualitative “seed” knowledge and allow it to experiment in its environment. learned. The new action is the linear interpolation the two closest results straddling the current goal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"""'~nOWle~\-based Environ~ents for Teaching and LearnIng

The Spring Symposium on Knowl· edge-based Environments for Teaching and Learning focused on the use of technology to facilitate learning, training, teaching, counseling, coaxing and coaching. Sixty participants from academia and industry assessed progress made to date and speculated on new tools for building second generation systems. Selection of topiCS and participants was motivated by a desi...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

Value Difference Metrics for Continuously Valued Attributes

Nearest neighbor and instance-based learning techniques typically handle continuous and linear input values well, but often do not handle symbolic input attributes appropriately. The Value Difference Metric (VDM) was designed to find reasonable distance values between symbolic attribute values, but it largely ignores continuous attributes, using discretization to map continuous values into symb...

متن کامل

Long-Term Symbolic Learning in Soar and ACT-R

The characteristics of long-term, symbolic learning were investigated using Soar and ACT-R models of a task to rearrange blocks into specific configurations. Long sequences of problems were run collecting data to answer fundamental questions about long-term, symbolic learning. The questions were whether symbolic learning continues indefinitely, how learned knowledge is used, and whether perform...

متن کامل

Learning Continuous Semantic Representations of Symbolic Expressions

The question of how procedural knowledge is represented and inferred is a fundamental problem in machine learning and artificial intelligence. Recent work on program induction has proposed neural architectures, based on abstractions like stacks, Turing machines, and interpreters, that operate on abstract computational machines or on execution traces. But the recursive abstraction that is centra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999